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LOW-SPEED WIND-TLTNNEL TESTS OF A FULL-SCALF: 

M2-F2 LIFTING BODY MODEL* 

By Kenneth W. Mort and Ber l  Gamse 
Ames Research Center 

SUMMARY 

The longi tudina l  and l a t e r a l - d i r e c t i o n a l  aerodynamic c h a r a c t e r i s t i c s  of 
t he  W-F2 l i f t i n g  body modelwere investigated i n  the  Ames 40- by 80-Foot Wind 
Tunnel. The W-F2 configuration w a s  based on the  M2-Fl design with modifica- 
t i o n s  t o  the  afterbody, t h e  con t ro l  surfaces,  and the  canopy loca t ion .  The 
e f f e c t s  of modifications t o  the model during the t e s t  series, b u t  not incor- 
porated i n  the  f i n a l  W-F2 Configuration, are a l s o  included. 

The inves t iga t ion  w a s  conducted over a range of angles of a t t a c k  from 
-8' t o  +28O, angles of s i d e s l i p  from -5O t o  +loo, and free-stream dynamic 
pressures from 17 t o  g( l b / f t2 .  
r a t i o n  was longi tudina l ly  s t a b l e  over t he  en t i r e  trimmed l i f t - c o e f f  i c i e n t  
range inves t iga ted ,  from 0 t o  0.9.  There was no evidence of s t a l l  except a t  
the  extreme combination of 24' angle of a t tack  and 10' angle of s i d e s l i p .  
m a x i m u m  l i f t - t o - d r a g  r a t i o s  r ea l i zed  f o r  t he  W-F2 configuration were 4.2 
untrimmed and 4.0 trimmed. 

The r e s u l t s  indicated t h a t  t he  M2-F2 configu- 

The 

INTRODUCTION 

Studies of l i f t i n g  body r een t ry  vehicles capable of cont ro l led  g l id ing  
f l i g h t  and conventional ho r i zon ta l  landings resu l ted  i n  the  bas i c  M2-Fl design 
( see  r e f s .  1-7). The r e s u l t s  of wind-tunnel and f l i g h t  t e s t s  of t h i s  vehicle 
configuration a r e  reported i n  reference 8, 9, and 10. The design of the  con- 
t r o l  surfaces,  t h e  afterbody, and the  canopy w a s  modified t o  improve the low- 
speed performance and handling cha rac t e r i s t i c s  of t h e  vehicle and t o  make the  
configuration compatible with high-speed f l i g h t  requirements. This modified 
configuration w a s  designated t h e  M2-F2. The low-speed aerodynamic charac te r -  
i s t i c s  determined by f i l l - s c a l e  wind-tunnel t e s t s  of t h i s  modified design and 
the  e f f e c t s  of o the r  modifications t e s t e d  during the  inves t iga t ions  leading t o  
t h e  d e f i n i t i o n  of t h e  M2-F2 configuration are reported here. 

NOTATION 
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L l i f t  coe f f i c i en t ,  - 
rolling-moment coe f f i c i en t ,  

pitching-moment coe f f i c i en t ,  

yawing -moment c o e f f i c i e n t  , Y 
side-force coe f f i c i en t ,  

drag force ,  l b  

l i f t  force ,  lb 

reference length  ( o r i g i n a l  length  of M2),  20 f t  

qs 
r o l l i n g  moment 

qSb 
i t ch ing  moment 

qsz 
awing moment 

qSb 
s ide  force  

CIS 

free-stream dynamic pressure,  l b / f t 2  

x 2  free-stream ve loc i ty  
kinematic v i s c o s i t y  Reyno Ids number , 

reference a rea  ( o r i g i n a l  body planform area  of M 2 ) ,  138.9 f t 2  

angle of a t tack ,  angle between cone a x i s  and f r e e  stream, deg 

angle of s i d e s l i p ,  deg 
. I C  

d i f f e r e n t i a l  upper f l a p  o r  elevon def lec t ion ,  deg I@ 4-4 r o i l  1 . f  ' + ,  GI* 

lower f l a p  def lec t ion ,  deg 

rudder def lec t ion ,  deg 

upper f l a p  def lec t ion ,  deg 

S u p  r s c r  i p t  

radius, i n .  

The fo rces  developed by the  model were resolved along the  wind axes and 
t h e  moments about t he  body axes. 

The s ign  convention f o r  con t ro l  surface def lec t ions ,  forces ,  and angles 
i s  given i n  f igu re  1. Zero angle on a l l  con t ro l  surfaces i s  defined as t h a t  
posit ion where the  con t ro l  surface i s  tangent w i th  t h e  model surface 
immediately upstream of the  con t ro l  hinge l i n e .  
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MODEL DESCRIPTION 

The model i s  shown i n  f i g u r e  2 i n s t a l l e d  i n  t h e  40- by 80-foot :iind 
tunnel.  The model dimensions a re  presented i n  f i gu re  3. The body of the  
model forward of s t a t i o n  240 was made from a f i b e r  g l a s s  mold of a plywood 
cons t ruc t ion  f l i g h t  vehicle (M2-Fl). Deviations of t h a t  f l i g h t  veh ic l e ' s  
dimensions from those i n  f i g u r e  3 were repeated on the  model. The model con- 
s t ruc t ion ,  therefore ,  i s  t y p i c a l  of large-scale wind-tunnel models i n  regard 
t o  a i r  leakage, con t ro l  surface attachments, and r i g i d i t y  b u t  i s  not t y p i c a l  
i n  regard t o  dimensional to le rances  and surface conditions.  

* 
ds fi0 - 

-..-_____I__ c _-_- c_.-- --.-I_ __II - 

The con t ro l  system of the  M2-F2 configuration ( f i g s .  1 and 3 ( a ) )  included 
upper-surface f l a p s  t h a t  moved together f o r  longi tudina l  con t ro l  and d i f f e ren -  
t i a l l y  f o r  la teral  cont ro l ,  and lower-surface f l a p s  t h a t  could be used inde- 
pendently or i n  conjunction wi th  t h e  upper f laps  f o r  l ong i tud ina l  cont ro l .  
The lower-surface f l a p s  were l imi ted  t o  a minimum de f l ec t ion  of loo and were 
always def lec ted  toge ther .  The model had s p l i t  f lap-type rudders on the  ou t -  
board surfaces of t h e  v e r t i c a l  s t a b i l i z e r  with only one surface de f l ec t ing  
outboard a t  a t i m e  f o r  d i r e c t i o n a l  cont ro l .  

The devices inves t iga ted  included ( f ig s .  3(b) ,  3 ( c ) ,  and 3 ( d ) )  t h e  
b o a t t a i l  f a i r i n g  (which was incorporated i-nto t h e  f i n a l  I42-F2 coEf igura t ion)  
elevons a t  t he  base of t he  v e r t i c a l  s t a b i l i z e r ,  f l a p s  with t h e i r  hinge l i n e  a t  
t h e  t r a i l i n g  edge of t h e  afterbody, quasi-wings simulating landing gear doors, 
outboard v e n t r a l  f i n s ,  and a c e n t r a l  do r sa l  f i n .  

TESTLNG PROCEDUREl 

The aerodynamic c h a r a c t e r i s t i c s  were obtained by varying the  angle of 
a t t a c k  from -12' t o  +280 f o r  s eve ra l  con t ro l  s e t t i n g s  and f o r  s i d e s l i p  angles 
of - 5 O ,  Oo, +5O,  and +loo. The e f f e c t s  of Reynolds nuniber were inves t iga ted  at 
one long i tud ina l  con t ro l  s e t t i n g  and zero s ides l ip  f o r  Reynolds numbers from 
2OX1O6 t o  3&106. 
w a s  performed at a Reynolds number of 36x10~ (dynamic pressure of 97 l b / f t 2 ) .  

Unless otherwise noted on t h e  f igu res ,  t he  inves t iga t ion  

I l - J , >  t p r  
/- M =  f'.?_ 

DATA REDUCTION 

Accuracy of Data 

The accuracy of the  da t a  presented, estimated from poss ib le  e r r o r s  i n  
measurements, instrumentation, and recording, i s  as follows : 

Rolling moment k400 f t - l b  L i f t  f10 lb  
Drag 23 lb  

P i tch ing  moment +300 f t - l b  Control surf ace 

Dynamic pressure k O . 5  percent 
Side fo rce  f 3  lb Angle of a t t a c k  +O. 2O 

Yawing moment -+loo f t - l b  deflection +o . 5 O  
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Corrections t o  the  Data 

The da ta  were corrected t o  account f o r  t he  unshielded main s t r u t  t i p s  and 
t a i l  s t r u t  and f o r  t he  fairir ig between t h e  main strut  t i p  and Lhe body 
( f i g .  2 ) .  

The s t r u t  t i p  and t a i l  s t r u t  t a r e  values used were: 

CD = 0.052 - 0.020 s i n  a 

Cm = -0.031 + 0.001 s i n  a 

Cn = 0.0518 s i n  p 

C1 = 0.0082 - 0.0116 s i n  a 

The f a i r i n g  tare values used were: 

CL = 0.111 s i n  a , a 5 18O 

= 0.034 - 0.093 s i n ( a  - 18') , a > 18' 

CD = 0.389 - 0.389 COS a - 0.020 s i n  a , a <_ 16O 

= 0.01 , > 16O 

Cm = -0.262 + 0.262 cos a + 0.0124 s i n  a , a <_ 16' 

= -0.007 + 0.055 s i n ( a  - 16') , a > 16' 

RESULTS AND DISCUSSION 

The r e s u l t s  a r e  presented i n  two p a r t s ,  the f i r s t  p a r t  documents t h e  
aerodynamic c h a r a c t e r i s t i c s  of t he  M2-F2 configuration, and the  second pre-  
s en t s  the e f f e c t s  of t he  various devices inves t iga ted  during t h e  process of 
defining t h e  M2-F2 configuration. 

Aerodynamic Charac t e r i s t i c s  of t h e  M2-F2 Configuration 

h n g i t u d i n a l  aerodynamic c h a r a c t e r i s t i c s . -  The e f f e c t  on the  long i tud ina l  
aerodynamic c h a r a c t e r i s t i c s  of varying t h e  Reynolds number from 2 0 ~ 1 0 ~  t o  
36x106 ( f i g .  4) i s  seen t o  be small, p a r t i c u l a r l y  f o r  l i f t  c o e f f i c i e n t s  below 
0.6. 
s e t t i ngs  a t  zero s i d e s l i p  a re  presented i n  f i g u r e  5. The trimmed long i tud ina l  
aerodynamic c h a r a c t e r i s t i c s  determined from f i g u r e  5 a r e  presented i n  f i g -  
u re  6. 
s t a b i l i t y  tends t o  decrease with increas ing  l i f t  c o e f f i c i e n t  ( p a r t i c u l a r l y  a t  
the  higher values of ? j l ) .  

The longi tudina l  aerodynamic c h a r a c t e r i s t i c s  for various p i t c h  con t ro l  

It is  evident from t h e  r e s u l t s  presented i n  f i g u r e  5 t h a t  t he  s t a t i c  

The s t a t i c  s t a b i l i t y  i s  a l s o  decreased s l i g h t l y  
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by decreased (more negative) upper f l a p  def lect ions and decreased lower f l a p  
def lec t ions  f o r  l i f t  coef f ic ien ts  less than 0.5. 

A comparison of fi-gures 5(a)  and ?(e) shows t h a t  t,he drag coe f f i c i en t  a t  
zero l i f t  f o r  the minimum f l a p  def lec t ion  tes ted (h = 0' and 61 = 10') was 
half  t h a t  for the  maxim f l a p  def lec t ion  (& = -25O and 62 = 4.0'). This drag 
increase i s  ind ica t ive  of the  increase i n  e f fec t ive  base area as  t he  f l a p s  are 
def lected away from the  body surface.  This base area increase r e s u l t s  i n  a 
m a x i m  untrimmed value of Su = 25' and 6 2  = 40° compared t o  
a value of L/D = 4.2 when 6, = Oo and 62 = loo. A change i n  m a x i m  L/D 
of the  same magnitude occurs f o r  the trimmed conditions of f igu re  6 when the  
cases for 6 l  = loo and 61.3.p are  compared. The m a x i m u m  trimmed L/D f o r  
62 = 10' w a s  4.0 and t h e a u a r t m  was 2.3 f o r  

L/D = 2 . 1  when 

.,? 61 = 40'. 

Figure 7 ind ica tes  that s i d e s l i p  did n o t  g r e a t l y  a f f e c t  the longi tudina l  
However, when the  angle of s i d e s l i p  w a s  c h a r a c t e r i s t i c s  a t  o r  below 

increased from 5' t o  loo, there  w a s  a sizable increase i n  drag and a small 
reduction i n  l i f t  curve slope. I n  addition, a t  
l i f t  coe f f i c i en t  w a s  reached a t  a, = 2 6 O ,  accompanied by an unstable  break i n  
t h e  pitching-moment curve. A t  P = 0' and 5O, a s t a l l  break w a s  never reached, 
and the  l i f t  coe f f i c i en t  was a l i n e a r  function of t he  angle of a t t a c k  over t he  
e n t i r e  range t e s t e d  (a = -10' t o  +28O). 

P = 5'. 

j3 = loo, a d e f i n i t e  maximum 

Latera l -d i rec t iona l  aerodynamic cha rac t e r i s t i c s . -  These c h a r a c t e r i s t i c s  
a re  presented i n  f igure  8(a) as a funct ion of  angle of a t t ack  for severa l  
s i d e s l i p  angles and i n  f igu re  8 (b )  as  a f inc t ion  of s i d e s l i p  angle f o r  s eve ra l  
angles of a t tack .  These data  show t h a t  the roll, yaw, and s ide-force coe f f i -  
c i e n t s  are near ly  l i n e a r  functions of P .  From the  yawing-moment r e s u l t s  of 
f igure  8 (  a ) ,  there  appears t o  be a t r ans i t i on  i n  the  value of the  yawing 
moment due t o  s i d e s l i p  (Cnp) from a low value t h a t  e x i s t s  at negative angles 
of a t t ack  t o  a high value t h a t  e x i s t s  f o r  angles of a t t a c k  g rea t e r  than 12'. 
This could be due t o  in t e rac t ion  of the  vortex flow from the leading edge with 
the  v e r t i c a l  s t a b i l i z e r s .  It i s  a l so  apparent from f igu re  8 ( a )  t h a t  there  i s  
sudden change i n  the yawing and r o l l i n g  moment a t  about 26O angle of a t t ack  
f o r  10' s i d e s l i p .  This, together  with t h e  previously mentioned unstable  break 
i n  the  pitching-moment curve, suggests t h a t  t he  flow separates  on the  windward 
v e r t i c a l  s t a b i l i z e r  and causes a breakdown i n  the  flow over t he  a f t e rpo r t ion  
of the  upper surface and a r e su l t i ng  forward movement of t he  center  of 
pressure.  

The e f f e c t s  of rudder and a i l e ron  def lect ions on the  l a t e r a l - d i r e c t i o n a l  
aerodynamic c h a r a c t e r i s t i c s  a re  presented i n  f i gu res  9 and 10, respect ively,  
f o r  an upper f l a p  s e t t i n g  of -loo and a lower f l a p  s e t t i n g  of 20°. 
t i ons  i n  rudder and a i l e ron  control  effect iveness  due t o  longi tudina l  cont ro l  
s e t t i ngs  were negl igible;  hence, r e s u l t s  f o r  only one s e t t i n g  a r e  presented. 
The l a t e r a l - d i r e c t i o n a l  aerodynamic cha rac t e r i s t i c s  a re  presented both a s  
funct ions of angle of a t t ack  f o r  d i f f e ren t  cont ro l  s e t t i ngs  and as  functions 
of cont ro l  s e t t i n g  f o r  d i f f e ren t  angles of a t tack .  The e f f e c t s  of the  l a t e r a l  
and d i r e c t i o n a l  cont ro ls  a re  seen t o  be e s sen t i a l ly  l i n e a r  funct ions of the  
respect ive con t ro l  def lect ions with only s,mll var ia t ions  due t o  angle of 
a t tack .  The l a rge  adverse yawing moment due t o  r o l l  cont ro l  ( C  

The var ia -  

/Cz6, M -1) nga 
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evident i n  f igu re  lO(b) should be noted. 
reported i n  reference 10, f o r  the  M2-Fl vehicle,  a CnBa/C16a value of about 

-0.2 was obtained during f l i g h t  tes ts .  This value w a s  considered acceptable 
f o r  t he  l i m i t e d  l i f t i n g  body mission even though t h e  r e s u l t i n g  r o l l  response 
w a s  sluggish and marginal when compared wi th  f igh ter - type  a i r c r a f t  requi re -  
ments. Unpublished r e s u l t s  of simulator s tud ie s  of t he  M2-F2 f l i g h t  charac- 
t e r i s t i c s  i nd ica t e  t h a t  i t s  l e v e l  of adverse yaw could be unacceptable. A 
cen ter  dorsa l  f i n ,  which reduces t h e  adverse yawing moment due t o  roll control, 
i s  discussed a t  the  end of t h e  following sec t ion .  

According t o  the  f l i g h t  t es t  r e s u l t s  

Aerodynamic Charac t e r i s t i c s  of Various Devices Investigated 

B o a t t a i l  f a i r i n g .  - The b o a t t a i l  f a i r i n g  w a s  incorporated in to  the  M2-F2 
configuration. 
it was when t h e  f a i r i n g  e f f e c t s  were inves t iga ted)  are shown i n  f i g u r e  3 ( b ) .  
The model was never t e s t e d  with t h e  a f t  f l a p s  of f  when the  b o a t t a i l  w a s  o f f .  
Because of t h i s ,  the  comparison of the  r e s u l t s  with and without t h e  b o a t t a i l  
f a i r i n g  includes the  e f f e c t  of moving the  af t  f l a p  26 inches f a r t h e r  back from 
t h e  moment reference.  However, t h i s  e f f e c t  i s  probably a s m a l l  percentage of 
t he  e f f ec t  of adding the  b o a t t a i l  f a i r i n g .  The bas i c  longi tudina l  aerodynamic 
c h a r a c t e r i s t i c s  a re  shown in, f i g u r e  11. The r e s u l t s  a r e  shown f o r  t he  elevon 
on and off and f o r  the  a f t  f l a p s  a t  -10' incidence. 
f i g u r e  ind ica tes  t h a t  the  b o a t t a i l  f a i r i n g  reduced the  drag and increased the  
l i f t - cu rve  slope, and hence increased the  untrimmed maximum 
It i s  also evident from t h e  pitching-moment r e s u l t s  of t h i s  f i g u r e  t h a t  t h e  
longi tudina l  s t a b i l i t y  of the  M2-F2 w a s  improved by the  addi t ion  of t he  boa t -  
t a i l  f a i r ing .  The presence of t h e  elevon af fec ted  the  cont r ibu t ion  of the 
b o a t t a i l  f a i r i n g ,  e spec ia l ly  a t  low angles of a t t ack .  

(designated M2-Fl) bu t  not on t h e  M2-F2 configuration. 
and the model configuration (as it w a s  when the  elevon e f f e c t s  were i n v e s t i -  
gated) are shown i n  f igure  3 ( b ) .  
tested was d i f f e r e n t  from t h a t  of t he  M2-Fl.) 
c h a r a c t e r i s t i c s  f o r  symmetrical def lec t ions  a re  shown i n  f igu re  12(a)  and the  
l a t e r a l - d i r e c t i o n a l  e f f e c t s  f o r  d i f f e r e n t i a l  def lec t ions  a re  shown i n  f i g -  
u re  12(b).  
i s t i c s  were genera l ly  improved by the  presence of t he  elevons. The da ta  shown 
i n  f igure  12(a) ind ica te  t h a t  a 10' change i n  angle of a t t a c k  had a g rea t e r  
e f f e c t  than an equal def lec t ion  of t he  elevon. This suggests t h a t  t he  body- 
induced upwash, which increases with angle of a t tack ,  i n t e r a c t s  with the  
elevons. 

The dimensions of the  f a i r i n g  and the  model Configuration (as 

An examination of  t h i s  

L/D by over 0 .5 .  

Elevons. - The elevons were used on the  o r i g i n a l  M2 configuration 
The elevon dimensions 

(It should be noted t h a t  t he  elevon pos i t i on  
The longi tudina l  aerodynamic 

These da ta  ind ica t e  t h a t  t h e  longi tudina l  aerodynamic charac te r -  

The l a t e r a l - d i r e c t i o n a l  r e s u l t s  shown i n  f igu re  12(b) ind ica te  t h a t  very 
l i t t l e  yawing moment i s  produced when t h e  elevons are d i f f e r e n t i a l l y  def lec ted  
f o r  roll cont ro l ,  t h a t  i s ,  Cnga/CIBa 0. Hence, one method of e l imina t ing  
- t h e  large a d ~ e ~ s - e ~ ~ ~ - o f _ t ~ ~ . - M 2 - F 2  c 2 n f i g u r a t  ion previously discussed i s  t o  
incorporate outboard mounted elevons. 

___ __ ~ ..-- ---* 

-_1_1 

--- -----___ll _I_-- 

The dimensions and arrangement of these f l a p s  a re  shown i n  
cont ro l  e f f ec t iveness  of these  f l a p s  i s  compared t o  t h a t  of 
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t h e  M2-F2 upper f l a p s  i n  f i g u r e  13. It i s  evident from t h i s  f i g u r e  t h a t  
changes i n  l i f t ,  drag, and p i tch ing  moment are l e s s  per degree of f l a p  def lec-  
t i o n  than a re  r e a l i z e d  with the  upper f l a p s  o f  t h e  M2-F2 configuration even 
though the  t a i l  volumes ( t a i l  1engt.h times surface a rea)  a re  almost i d e n t i c a l .  
This i s  probably due t o  a g rea t e r  influence o f  t he  M2-F2 f l a p  on t h e  body flow 
p a t t e r n s .  However, if trimmed r e s u l t s  a r e  obtained from these  data, drag for 
a given l i f t  i s  s l i g h t l y  higher f o r  the  upper f l a p s .  Hence, the  t r i m  drag i s  
s l i g h t l y  lower f o r  t h e  a f t  f l aps .  

Quasi-wings.- The dimensions of the  configuration wi th  t h e  wing root  
f a i r e d  a re  given i n  f igu re  3 (c )  ; the  photograph shows t h e  arrangement with 
the  roo t  unfa i red  and unsealed. The shape of these  wings was  intended t o  s i m -  
u l a t e  landing gear doors t h a t  could a l so  serve as simple l i f t i n g  sur faces .  
The longi tudina l  aerodynamic cha rac t e r i s t i c s  wi th  and without the wings are 
presented i n  f i g u r e  14.' Results are shown for two incidences and with and 
without t he  wing root  f a i r e d  and sealed.  
improved the  performance, e spec ia l ly  with the roo t  sealed and f a i r e d .  
maxim L/D was  increased by about 1. These l i f t i n g  sur faces  would not only 
improve the  performance b u t  would a l so  reduce t h e  landing a t t i t u d e  substan- 
t i a l l y .  For a 5.2O wing incidence a t  CL = 0.5, t h e  wings would reduce a by 
about 7.5'. The maximum incremental increase i n  CL achieved f o r  the  range 
of va r i ab le s  inves t iga ted  w a s  0.22 a t  This i s  equivalent t o  a m a x -  
imum lift. coe f f i c i en t  of 1.1 based on the  projected a rea  of  t h e  wing and i s  an 
unusually high value f o r  t h i s  type of l i f t i n g  sur face .  
t h a t  t h i s  type of l i f t i n g  device i s  a promising method of improving the  
performance of l i f t i n g  body vehic les .  

It i s  apparent t h a t  the  quasi-wings 
The 

CL = 9'. 

These r e s u l t s  suggest 

A simple computation using the  r e s u l t s  o f  f i g u r e  1 4  shows t h a t  t he  cen te r  
of pressure of t he  r e s u l t a n t  force  increment moves forward of the  wing panels 
a f t e r  wing s t a l l  occurs.  This ind ica tes  s ign i f icant  i n t e rac t ions  between the  
flow about t h e  bas i c  body and the  quasi-wing panels.  

Outboard v e n t r a l  f i n s .  - The outboard vent ra l  f i n s  a re  described i n  
f igu re  3 ( d ) .  
occurred on t h e  lower surface of the body. 
gated, the t h i n  outboard v e n t r a l  f i n s  and the t h i c k  outboard v e n t r a l  f i n s .  
The t h i c k  f i n s  w e r e  designed t o  withstand high-speed aerodynamic heating. 

These f i n s  were intended t o  s t ra ighten  t h e  outboard flow t h a t  
Two configurations were i n v e s t i -  

The aerodynamic c h a r a c t e r i s t i c s  a re  shown i n  f igu re  15 f o r  t he  t h i n  f i n s  
and i n  f i g u r e  16 f o r  t he  t h i c k  f i n s .  
bo th  t h e  long i tud ina l  and d i r e c t i o n a l  s t a b i l i t y  and s l i g h t l y  decrease the  
r o l l i n g  moment due t o  s i d e s l i p .  
similar bu t  smaller than those of the  t h i n  f i n s .  

It i s  seen t h a t  t h e  t h i n  f i n s  increase 

The aerodynamic e f f e c t s  of t h e  t h i c k  f i n s  are 

Center d o r s a l  f i n .  - The center  d o r s a l  f i n  described i n  f igu re  3(d) was 
intended as a flow s t ra ighten ing  device during a i l e r o n  con t ro l  s e t t i n g s .  
l a t e r a l - d i r e c t i o n a l  aerodynamic cha rac t e r i s t i c s  a re  shown i n  f igu re  17 as a 
func t ion  of roll con t ro l  s e t t i n g s .  The basic longi tudina l  and l a t e r a l -  
d i r e c t i o n a l  aerodynamic c h a r a c t e r i s t i c s  are not presented s ince  the  e f f e c t  of 

LThe s c a t t e r  i n  t h e  moment coef f ic ien t  evident i n  f i g u r e  14 and i n  
figures 11 and 12 i s  a r e s u l t  of the  reduced accuracy due t o  t h e  low t e s t  

The 

dynamic pressure  (17 lb / f t2 )  . 
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t h e  dorsal  f i n  on these  c h a r a c t e r i s t i c s  w a s  neg l ig ib l e .  The resu l t s  of 
f i g u r e  17 indica te  t h a t  Cn8,/C18, would be reduced from about -1 t o  -0.2 if  

t h e  dorsal  f i n  were used on the  M2-F2. The e f f e c t  on t h e  roll con t ro l  was 
very small. Hence, if the  l a rge  adverse yaw due t o  roll con t ro l  present on 
t h e  M2-F2 configuration i s  unacceptable, one successfu l  .- method -1-1- afmarked3_y 
decreasing it i s  by a do r sa l  f i n  suc&--as Lhat.~Lg&& 

2______- - - - 

CONCLUDING FEMARKS 

The maximum untrimmed L/D of t h e  M2-F2 conf igura t ion  w a s  4.2; t h e  
m a x i m  trimmed L/D was 4.0. The model had pos i t i ve  s t a t i c  longi tudina l  
s t a b i l i t y  over the  e n t i r e  t r i m  range inves t iga ted .  

The adverse yaw due t o  roll con t ro l  w a s  l a rge  bu t  can be reduced by t h e  
addition of a small do r sa l  f i n  between t h e  upper f l a p s .  

Wind-tunnel tes ts  of t he  M2-F2 l i f t i n g  body have shown t h a t  t he re  a re  
s ign i f i can t  i n t e rac t ions  between t h e  components and the  body. Thus, the  
aerodynamic c h a r a c t e r i s t i c s  determined from t e s t s  of i s o l a t e d  components 
could not  be superimposed t o  p red ic t  t h e  o v e r a l l  aerodynamic c h a r a c t e r i s t i c s  
accurately.  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  Cal i f . ,  Nov. 3, 1966 
124-07 -02-10-21 
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(a) Three -quarter f r o n t  v i e w .  A-32524 

Figure 2.- The model mounted i n  the  40- by 80-foot wind tunnel.  
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(b) Three-quarter rear v i e w .  

Figure 2. - Concluded. 

A-33440 



rr) 
X 

lo m 
0 
0 
9 + 
X 

(u 

r- 
9 

p! 

I 
X 

I 

I; u) 

I1 

> h 
KJ 
0 

I 
m 

14 



u) a 
-I 
LL 

a 

t a 

v) z 
-N > 

W 

0 0  

E 0 

0 
In 

h 
U 0 

.- 
c 

+ 

m 



Projected areahide: 12-112 f t *  

All dimensions 
in inches 

‘15 - 
A- A l l  edges have Ir 

I 

----_ 

156 177 
Body stations Lkzj A -A 

A-31466 
( c )  Deta i l s  of quasi  -wings. 

Figure 3.  - Continued. 
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(a) Results presented as a function of CL. 

Figure 8.- Effects of sideslip on the  lateral-directional aerodynamic 
characteristics of the basic W-F2 configuration; S, = -loo, 
6 L  = 20°. 
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Figure 9.-  Effects of rudder deflection on the lateral-directional aerodynamic 
characteristics of the basic W-F2 configuration; S, = -loo, 62 = 20'. 
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Figure 10.- Effects of aileron deflection on the lateral-directional 
aerodynamic characteristics of the basic W-F2 configuration; 
s, = -100, 62 = 200. 
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